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. (Answer: 528)

Between 1 and 500, there are |v/500| = 22 perfect squares and | V/500] = 7 perfect
cubes. Among these integers there are |v/500] = 2 of them (1 and 64) that are
counted twice. Thus there are 22 + 7 — 2 = 27 integers between 1 and 500 that are
not in the sequence. To get the 500" number, we must append 27 integers to the list
2,3,5,...,500 of 473 non-squares and non-cubes. Since we cannot use 512, the last
number will be 528.

. (Answer: 828)
We split 52 into two parts to obtain squares in each set of parentheses:
(52 4 6v/43)*/* — (52 — 6/43)*/2
= (43 + 643 + 9)*/% — (43 — 6V/43 4 9)*/2
_ [(\/.ﬁ % 3)2]3{2 — (VB3 -3y 3/2
= (V43 + 3)* — (V43 - 3)°
= (43V43 +3-3-43+ 3343 +3°%)
—(43V43-3-3-43+3-3%V/43 - 3%)
= 828.

Alternate Solution. Let a = (52 + 61/43)!/? and 8 = (52 — 61/43)'/2. We wish to
find &® — 3% = (@ — B)(a® + af + 7). Now
?+p*=104 and off =(52% —36-43)"/? = (1156)'/? = 34.

Thus (o — 8) = a? —2af + 3% = 104 — 68 = 36, so a — f = 6 and o® — §° =
6(104 + 34) = 828,

. (Answer: 117)
In a regular n-gon, each interior angle has radian measure (n—2)x /n. The information

in the problem says

59 r—2 5—2 rs—2s
ﬁ_( T 71r)/( s ﬂ-)—rs-Qr' (*)
Solving for r gives
_— 116s
T 18-’

Since r must be positive, we must have s < 117. Indeed, if s = 117 then we find
r =116 - 117 and equation (*) will be satisfied.




4.

o

1990 AIME SOLUTIONS

(Answer: 013)
Let z? — 10z = y. The equation in the problem then becomes

from which

1 11 1
y—29 y—69 y—69 y-—45

and
—40 24

(y—29)(y —69)  (y—45)(y — 69)

follows. This equation has y = 39 as its only solution. We then note that 22 —10z = 39
is satisfied by the positive number 13.

. (Answer: 432)

Suppose the prime factorization of n has the form

r1 .2

n=p P "'p;k!

where py, pa,..., pr are the distinct prime divisors of n and ry, ra,...,r; are positive
integers. Then the number of divisors of n is given by

(1'1 + 1)(7‘2 + 1)"'(Tk + 1).

Since this last product must be 75 = 3 -5 - 5, we see that n can have at most three
distinct prime factors. To ensure that n is divisible by 75 and that the n we obtain is
minimal, the prime factors must belong to the set {2,3,5}, with the factor 3 occurring
at least once and the factor 5 occurring at least twice. Thus

n=2m3rst
with
(ri+1)(r2+1)(r3+1) =75 re 2 1,r3 2 2.

It is not hard to write down the ordered triples (ry,r2,73) that satisfy the above
conditions:

(4,4,2)  (4,2,4) (2,44  (0,4,14)
(0,14,4)  (0,2,24)  (0,24,2).

Among the above ordered triples, the minimum value for n occurs when ry = r3 = 4
and r3 = 2. Thus our answer is n/75 = 213% = 432,



1990 AIME SOLUTIONS 5

6. (Answer: 840)
Let
X = the number of fish in the lake on May 1,

Y = the number of fish in the lake on September 1.

From the data in the problem we find that ¥ = .75X + .40Y, and that the number
of tagged fish in the lake on September 1 is .75(60) = 45. Thus, assuming the tagged
fish are fairly represented in the September 1 sample, we have

3 45

0V
Hence ¥ = 1050 and X = .60Y/.75 = 840.

7. (Answer: 089)
Extend PR through R to T, where T is selected so that PQ = PT. Since PQ = 25

and PR = 15, the point T has coordinates

:(—8,5)+g(9,—12)

=(7,-15).

Now /P in APQR and /P in APQT have the same bisector. Since APQT is
isosceles, with PQ = PT, this bisector intersects QT at its midpoint, (—4,—17).
Thus the slope of the bisector is —% and its equation can be written in the form
11z + 2y + 78 = 0. Hence a + ¢ =11+ 78 = 89.

Alternate Solution. Consider the vectors ﬁa = —T71— 247 and PR = 97— 127. Let
¥ = ai’+ bj'be a vector parallel to the bisector of ZP. Then the angle between vectors
m and 7 is equal to the angle between vectors ¥ and PR. Let ¢ be the measure of
each of these angles. Then

7 PQ 7- PR
—_— =CosQ =

151 1P| 151 I PR
giving
—7a—24b  9a—12b
25 -
which simplifies to 11a + 2b = 0. Hence b = —4la and it follows that the bisector of
LP has slope —1t. The equation of the bisector can be written as 11z + 2y +78 = 0,
so a+c=11+4+ T8 =89.
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Alternate Solution. Let «, 3, 7, respectively, be the angles that PR, PQ and the
bisector of ZP make with the z-axis. (These angles are measured counterclockwise
from the z-axis.) Let m be the slope of the bisec-
tor of ZP. Then the slope of PR is tana = -3,
the slope of PQ is tan 3 = 274, and the slope of
the bisector of /P is tany = m. Since a — v =

34P =~ — B, we have tan(a — v) = tan(y — §). ma

Using the formula for the tangent of the differ- \

ence of two angles gives

tana —tany _ tany—tanf DR
1+tanatany 14 tanytanf’

which leads to

o, Y st
310 m—F Q

1—4m 1+ %m’

The last equation has solutions m = —1l and m = % The solution — % is the slope

of the internal bisector of ZP. (Some other line has slope % Which one?) We then
find that the equation of the bisector can be written in the form 11z + 2y + 78 = 0,

and a+¢=11+4 78 = 89.

. (Answer: 560)

Consider the eight shots that must be fired to break the eight targets. Of the eight,
any subset of three shots may be the shots used to break the targets in the first column
(but once these three shots are chosen the rules of the match determine the order in
which the targets in the first column will be broken by these shots.) This set of shots
for the first column may be chosen in (g) ways. From the remaining five shots, the
three used to break the targets in the other column of three may be chosen in (i)
ways, while the remaining two shots will be used to break the remaining two targets.
Combining, we find that the number of orders in which the targets can be broken is

@ @ @) B (3,2,2) = %:2. = 560.
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(Answer: 073)

There are 2" possible sequences of length n that can be formed from the letters T
and H. Let A(n) be the number of these sequences in which there are no adjacent
occurrences of H. The values A(1) = 2, A(2) = 3 and A(3) = 5 may be found by simply
listing all possible outcomes for tosses of 1, 2 and 3 coins respectively. For higher values
of n, we may find A(n) by using the recursion relation A(n +2) = A(n + 1) + A(n),
which holds for any positive integer n. This recursion relation is true because A(n+2)
counts two distinct types of sequences: those with no consecutive H’s that end with
T (there are A(n + 1) of them) and those with no consecutive H’s that end with TH
(there are A(n) of these).

It follows that the values A(n) are Fibonacci numbers, so A(10) = 144. Hence the
probability of tossing a coin ten times and never having heads occur on consecutive
tosses is 144/1024 = 9/64 and 1 + 7 = 73.

(Answer: 144)
First observe that if z € A and w € B, then

(zw)144 — (Z‘JB)S(wtlS)S =1

This shows that the set C is contained in the set of 144'" roots of unity. Next we
show that any 144'" root of unity is in C, thereby showing that C has 144 elements.
Let z be a 144" root of unity. Then there is an integer k with

o 27rJIC +ig 2:Irk s 21rk_ . (27 ¥
& =008 | 77 isin =k | =ecis| 7ok | = |cis| 7o ,
where the last equality follows by an application of DeMoivre’s formula. We next

express the greatest common divisor of 18 and 48 as 6 = 3 - 18 — 48 and use this in
the following:

. 2«7 . 2 o 2 2 27
v (§57) = (5 -0) =is (00 18- 19)) = io (g9 s (350-0).

By another application of DeMoivre’s formula, we now have

=[G o) - (3 ).

which shows that z is a product of elements from A and B. Hence the set of 144"
roots of unity is a subset of C. We may conclude that C is the set of 144'" roots of
unity, so C has 144 elements.
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(Answer: 023)
If n! can be expressed as the product of n—3 consecutive integers, then there is a
positive integer k such that

(n + k)!
(k+3)!"

nl=n+k)(n+k-1)---(k+4)=

We can express this last relation as

(n+k)!/n!
(k+3)!

and expand to get
n+k.n+k—1“_n—|—2_n+1 —1
E+3 k+2 5 4 T
If n > 23, then the k factors on the left of the previous equation all exceed 1 and the
equation cannot be true. On the other hand, n = 23 and k = 1 is an obvious solution
to (1) and shows that n = 23 is the answer to the problem.

Note. The above argument can be generalized to prove the following result: Letr > 2
be an integer. The largest integer n for which n! can be written as the product of n—r
consecutive positive integers isn = (r + 1) — 1.

(Answer: 720)

Position the 12-gon in the Cartesian plane with its center at the origin and one vertex
at (12,0). Compute the sum, S, of the lengths of the eleven segments emanating from
this vertex. The coordinates of the other vertices are given by (12cos kz,12sin kz)
where 2 = 30° and k = 1,2,...,11. The length of the segment joining (12,0) to
(12 cos kx,12sin kz) is

12/(cos kx — 1)? + (sin kz)? = 12v/2 — 2cos kz = 24sin %x-
Thus the sum of the lengths of the 11 segments from (12,0) is
S = 24(sin15° +sin 30° + - - - + sin 150° + sin 165°).
Since sint = sin(180° — t) we may write

S = 48(sin 15° + sin 30° + sin 45° + sin 60° + sin 75°) 4 24 5in 90°.
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Now
sin 15° + sin 75° = sin(45° — 30°) + sin(45° + 30°)
= 2sin 45° cos 30°
18
= E\/é
Thus

1 - 1 3
S=48(§\/§+§+§+§)+2¢1

= 48 + 24v/2 + 24+/3 + 24/6.

The same value, S, occurs if we add the lengths of all segments emanating from
any other vertex of the 12-gon. Since each segment is counted at two vertices (its
endpoints) the total length of all such segments is

%(125) — 288 + 144v/3 + 144V/3 + 1446,

Hence a4+ b+c+d =283 4+ 144 + 144 4 144 = 5- 144 = T720.

. (Answer: 184)

Note that 9% has one more digit than 9!, except in the case when 9% starts with
a 9. In the latter case, long division shows that 9%~! starts with a 1 and has the
same number of digits as 9%. Therefore, when the powers of 9 from 9° to 91000
are computed there are 3816 increases in the number of digits. Thus there must be
4000 — 3816 = 184 instances when computing 9% from 9%~ (1 < k < 4000) does not
increase the number of digits. Since 9° = 1 does not have leading digit 9 we can
conclude that 9% (1 < k < 4000) has a leading digit of 9 exactly when there is no
increase in the number of digits in computing 9% from 9%=1. It follows that 184 of the
numbers must start with the digit 9.

Note. We did not need to know that the leading digit of 9%°°° is 9, but it was
important to note that the leading digit of 9° is not 9.
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14. (Answer: 594)

Let m and n denote CD and BC), respectively. Three of the faces are lettered PBC),

PCD, and PDB (see diagram). Let N be

the point where the altitude from P meets P

BCD. We first show that N is the circum-

center of ABCD. To see this, note that

APNB, APNC and APND are congru- B

ent by the hypotenuse-leg criterion. It fol-

lows that BN, CN and DN all have the <

same length r; this r is the radius (and Pl

hence N is the center) of the circle that

circumscribes ABCD. We will find the value of r and use it to find PN. From B
draw a diameter of the circumcircle. Let the
other end of this diameter be F' and let E be
the point where the diameter meets CD. Then
LBFD = /ECDB since both angles subtend the
same arc on the circumcircle. Hence the two
right triangles ABFD and ABCE are similar,
implying BF/BD = BC/BE. Since BF = 2r,
the last equation gives

n? n?

- 2(BE) 4nT —m?

Now using PB = %vmﬁ +n? we can find PN, the altitude of the pyramid, by the
Pythagorean theorem:

r

m?2 -+ n? nt
4 4n? —m?’

m [3n? —m?
PN ==y ——s
2 ¥V 4n* —m

Thus, the volume of pyramid PBCD is

PN?=PB? - BN? =

Hence

1 1 m [3n2—m? m m?  m? ; ;
'3‘(PN)(Area(/_\BCD)) =z sV —é-\/nz — — = —1/3n? —m?

Since m? = 432 and n? = 507, the volume is 594.
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15. (Answer: 020)
For n =1 and n = 2, the identity

(1) (az™*1 + by™)(z + y) — (az” + by™)zy = az™*? + by
yields the equations

Nz +y)—3zy=16 and 16(z +y) — Toy = 42.
Solving these last two equations simultaneously, one finds that
(2) z+y=-14 and zy = —38.
Applying (1) with n = 3 then gives

az® + by® = (42)(—14) — (16)(—38) = —588 + 608 = 20.

Note: From (2) we can solve for z and y. We obtain z = —7% V87 and y = —TF /87,
: 49 457 49 457
fromwhlcha_ﬁi-@\/g? andb_%:{:m !





