American Mathematics Competitions 16 TH ANNUAI.
 Solutions Pamphlet TUESDAY; NOVEMBER 14, 2000

Sponsored by Mathematical Association of America University of Nebraska
American Statistical Association Society of Actuaries American Society of Pension Actuaries American Mathematical Association of Two Year Colleges Consortium for Mathematics and its Applications National Association of Mathematicians School Science and Mathematics Association
Casualty Actuarial Society National Council of Teachers of Mathematics American Marhematical Society Pi Mu Epsilon
Mu Alpha Theta
Kappa Mu Epsilon
Clay Marhematics Institute

This Solutions Pamphlet gives at least one solution for each problem on this year's exam and shows that all the problems can be solved using marerial normally associated with the mathematics curriculum for students in eighth grade or below. These solutions are by no means the only ones possimle, nor are they necessarily superior to others the reader may devise.
We hope that teachers will share these solutions with their students. However, the publication, reproduction, or communication of the problems or solutions of the AMC 8 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Duplication at any time via copier, telephone, e-mail, World Wide Web or media of any type is a violation of the copyright law.

Correspon dence about the problems and solutions should be addressed to:
Prof. Joseph W. Kennedy, AMC 8 Chair / kennedj@muohio.edu
Department of Mathematics and Statistics, Miami University Oxford, OH 45056
Orders for prior year Exam questions and Solutions Pamphlets should be addressed to: Prof. Titu Andreescu, AMC Director / titu@amc.unl.edu
American Mathematics Competitions, University of Nebraska-Lincoly

$$
\text { P.O. Box } 81606
$$

Lincoln, NE 68501-1606

1. Answer (B): Brianna is half as old as Aunt Anna, so Brianna is 21 years old. Caitlin is 5 years younger than Brianna, so Caitlin is 16 years old.
2. Answer (A): The number 0 has no reciprocal, and 1 and -1 are their own reciprocals. This leaves only 2 and -2 . The reciprocal of 2 is $\frac{1}{2}$, but 2 is not less than $\frac{1}{2}$. The reciprocal of -2 is $-\frac{1}{2}$, and -2 is less than $-\frac{1}{2}$.
3. Answer (D): The smallest whole number in the interval is 2 because $\frac{5}{3}$ is more than 1 but less than 2. The largest whole number in the interval is 6 because 2π is more than 6 but less than 7 . There are five whole numbers in the interval. They are $2,3,4,5$, and 6 .

4. Answer (E): The data are 1960(5\%), 1970(8\%), 1980(15\%), and 1990(30\%). Only graph (E) has these entries.
5. Answer (C): If the first year of the 8-year period was the final year of a principal's term, then in the next six years two more principals would serve, and the last year of the period would be the first year of the fourth principal's term. Therefore, the maximum number of principals who can serve during an 8 -year period is 4 .

6. Answer (A): The L-shaped region is made up of two rectangles with area $3 \times 1=3$ plus the corner square with area $1 \times 1=1$, so the area of the L-shaped figure is $2 \times 3+1=7$.

OR

Square $F E C G$ - square $F H I J=4 \times 4-3 \times 3=16-9=7$.

OR

The L-shaped region can be decomposed into a 4×1 rectangle and a 3×1 rectangle. So the total area is 7 .
7. Answer (B): The only way to get a negative product using three numbers is to multiply one negative number and two positives or three negatives. Only two reasonable choices exist: $(-8) \times(-6) \times(-4)=(-8) \times(24)=-192$ and $(-8) \times 5 \times 7=(-8) \times 35=-280$. The latter is smaller.
8. Answer (D): The numbers on one die total $1+2+3+4+5+6=21$, so the numbers on the three dice total 63 . Numbers $1,1,2,3,4,5,6$ are visible, and these total 22 . This leaves $63-22=41$ not seen.
9. Answer (D): The 3 -digit powers of 5 are 125 and 625 , so space 2 is filled with a 2 . The only 3 -digit power of 2 beginning with 2 is 256 , so the outlined block is filled with a 6.
10. Answer (E): Shea is 60 inches tall. This is 1.2 times the common starting height, so the starting height was $\frac{60}{1.2}=50$ inches. Shea has grown $60-50=10$ inches. Therefore, Ara grew 5 inches and is now 55 inches tall.
11. Answer (C): Twelve numbers ending with 1, 2, or 5 have this property. They are $11,12,15,21,22,25,31,32,35,41,42$, and 35 . In addition, we have 33 , $24,44,36$, and 48 , for a total of 17 . (Note that 20,30 , and 40 are not divisible by 0 , since division by 0 is not defined.)
12. Answer (D): If the vertical joins were not staggered, the wall could be build with $\frac{1}{2}(100 \times 7)=350$ of the two-foot blocks. To stagger the joins, we need only to replace, in every other row, one of the longer blocks by two shorter ones, placing one at each end. To minimize the number of blocks this should be done in rows 2,4 , and 6 . This adds 3 blocks to the 350 , making a total of 353 .
13. Answer (C): Since $\angle A C T=\angle A T C$ and $\angle C A T=36^{\circ}$, we have $2(\angle A T C)=$ $180^{\circ}-36^{\circ}=144^{\circ}$ and $\angle A T C=\angle A C T=72^{\circ}$. Because $\overline{T R}$ bisects $\angle A T C$, $\angle C T R=\frac{1}{2}\left(72^{\circ}\right)=36^{\circ}$. In triangle $C R T, \angle C R T=180^{\circ}-36^{\circ}-72^{\circ}=72^{\circ}$.
Note that some texts use $\angle A C T$ to define the angle and $m \angle A C T$ to indicate its measure.
14. Answer (D): The units digit of a power of an integer is determined by the units digit of the integer; that is, the tens digit, hundreds digit, etc... of the integer have no effect on the units digit of the result. In this problem, the units digit of 19^{19} is the units digit of 9^{19}. Note that $9^{1}=9$ ends in $9,9^{2}=81$ ends in $1,9^{3}=729$ ends in 9 , and, in general, the units digit of odd powers of 9 is 9 , whereas the units digit of even powers of 9 is 1 . Since both exponents are odd, the sum of their units digits is $9+9=18$, the units digit of which is 8 .
15. Answer (C): We have

$$
\begin{aligned}
A B+B C+C D+D E+E F+F G+G A & = \\
4+4+2+2+1+1+1 & =15
\end{aligned}
$$

16. Answer (C): The perimeter is $1000 \div 10=100$, and this is two lengths and two widths. The length of the backyard is $1000 \div 25=40$. Since two lengths total 80 , the two widths total 20 , and the width is 10 . The area is $10 \times 40=400$.
17. Answer (A): We have

$$
(1 \otimes 2) \otimes 3=\frac{1^{2}}{2} \otimes 3=\frac{1}{2} \otimes 3=\frac{\left(\frac{1}{2}\right)^{2}}{3}=\frac{\frac{1}{4}}{3}=\frac{1}{12}
$$

and

$$
1 \otimes(2 \otimes 3)=1 \otimes\left(\frac{2^{2}}{3}\right)=1 \otimes \frac{4}{3}=\frac{1^{2}}{\frac{4}{3}}=\frac{3}{4}
$$

Therefore,

$$
\text { Q } 2) \otimes 3-1 \otimes(2 \otimes 3)=\frac{1}{12}-\frac{3}{4}=\frac{1}{12}-\frac{9}{12}=-\frac{8}{12}=-\frac{2}{3}
$$

18. Answer (E): Divide each quadrilateral as shown. The resulting triangles each have base 1 , altitude 1 , and area $\frac{1}{2}$, so the quadrilaterals each have area 1.

Three sides of quadrilateral I match those of quadrilateral II as indicated by matching marks. The fourth side of quadrilateral I is less than the fourth side of quadrilateral II, hence its perimeter is less, and choice (E) is correct.
19. Answer (C): Divide the semicircle in half and rotate each half down to fill the space below the quarter-circles. The figure formed is a rectangle with dimensions 5 and 10 . The area is 50 .
OR

Slide I into III and II into IV as indicated by the arrows to create the 5×10 rectangle.

20. Answer (A): Since the total value is $\$ 1.02$, you must have either 2 or 7 pennies. It is impossible to have 7 pennies, since the two remaining coins cannot have a value of 95 cents. With 2 pennies the remaining 7 coins have a value of $\$ 1.00$. Either 2 or 3 of these must be quarters. If you have 2 quarters, the other 5 coins would be dimes, and you would have no nickels. The only possible solution is 3 quarters, 1 dime, 3 nickels and 2 pennies.
21. Answer (B): Make a complete list of equally likely outcomes:

Keiko	Ephraim	Same Number of Heads?
H	HH	No
H	HT	Yes
H	TH	Yes
H	TT	No
T	HH	No
T	HT	No
T	TH	No
T	TT	Yes

The probability that they have the same number of heads is $\frac{3}{8}$.
22. Answer (C): The area of each face of the larger cube is $2^{2}=4$. There are six faces of the cube, so its surface area is $6(4)=24$. When we add the smaller cube, we decrease the original surface area by 1 , but we add $5\left(1^{2}\right)=5$ units of area (1 unit for each of the five unglued faces of the smaller cube), This is a net increase of 4 from the original surface area, and 4 is $\frac{4}{24}=\frac{1}{6} \approx 16.7 \%$ of 24 . The closest value given is 17 .
23. Answer (B): Since the average of all seven numbers is $6 \frac{4}{7}=\frac{46}{7}$, the sum of the seven numbers is $7 \times \frac{46}{7}=46$. The sum of the first four numbers is $4 \times 5=20$ and the sum of the last four numbers is $4 \times 8=32$. Since the fourth number is used in each of these two sums, the fourth number must be $(20+32)-46=6$.
24. Answer (D): Since $\angle A F G=\angle A G F$ and $\angle G A F+\angle A F G+$ $\angle A G F=180^{\circ}$, we have $20^{\circ}+2(\angle A F G)=180^{\circ}$. So $\angle A F G=$ 80°. Also, $\angle A F G+\angle B F D=190^{\circ}$, so $\angle B F D=100^{\circ}$. The sum of the angles of $\triangle B F D$ is 180°, so $\angle B+\angle D=80^{\circ}$.

Note: In $\triangle A F G, \angle A F G=\angle B+\angle D$. In general, an exterior angle of a triangle equals the sum of its remote interior angles. For example, in $\triangle G A F, \angle x=\angle G A F+\angle A G F$.
Note that, as in Problem 13, some texts use different symbols to represent an angle and its degree measure.
25. Answer (B): Three right triangles lie outside $\triangle A M N$. Their areas are $\frac{1}{4}, \frac{1}{4}$, and $\frac{1}{8}$ for a total of $\frac{5}{8}$ of the rectangle. The area of $\triangle A M N$ is $\frac{3}{8}(72)=27$.

OR

Let the rectangle have sides of $2 a$ and $2 b$ so that $4 a b=72$ and $a b=18$. Three right triangles lie outside triangle $A M N$, and their areas are $\frac{1}{2}(2 a)(b), \frac{1}{2}(2 b)(a), \frac{1}{2}(a)(b)$, for a total of $\frac{5}{2}(a b)=\frac{5}{2}(18)=45$. The area of triangle $A M N$ is $72-45=27$.

